Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Mol Med Rep ; 29(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38639180

RESUMO

Knee osteoarthritis (KOA) is a major cause of disability in elderly individuals. Dicoumarol is a coumarin­like compound derived from sweet clover [Melilotus officinalis (L.) Pall]. It has been suggested that dicoumarol exhibits various types of pharmacological activities, including anticoagulant, antitumor and antibacterial effects. Due to its various biological activities, dicoumarol has a potential protective effect against OA. Therefore, the present study aimed to assess the effects of dicoumarol on knee osteoarthritis. In the present study, dicoumarol was found to protect rat synoviocytes from lipopolysaccharide (LPS)­induced cell apoptosis. Western blot analysis showed that dicoumarol significantly reduced the protein expression levels of fibrosis­related markers and inflammatory cytokines (Tgfb, Timp, Col1a, Il1b and Il18). The inhibitory rates of these proteins were all >50% (P<0.01) compared with those in the LPS and ATP­induced group. Consistently, the mRNA expression levels of these markers and cytokines were decreased to normal levels by dicoumarol after the treatment of rat synovial fibroblasts with LPS and ATP. Mechanistic studies demonstrated that dicoumarol did not affect NF­κB signaling, but it did directly interact with NOD­like receptor protein 3 (NLRP3) to promote its protein degradation, which could be reversed by MG132, but not NH4Cl. The protein half­life of NLRP3 was accelerated from 26.1 to 4.3 h by dicoumarol. Subsequently, dicoumarol could alleviate KOA in vivo; knee joint diameter was decreased from 11.03 to 9.93 mm. Furthermore, the inflammation and fibrosis of the knee joints were inhibited in rats. In conclusion, the present findings demonstrated that dicoumarol could impede the progression of KOA by inhibiting NLRP3 activation, providing a potential treatment strategy for KOA.


Assuntos
Osteoartrite do Joelho , Animais , Ratos , Trifosfato de Adenosina , Citocinas , Dicumarol , Fibrose , Inflamassomos/metabolismo , Inflamação , Lipopolissacarídeos/toxicidade , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas NLR , Osteoartrite do Joelho/metabolismo
2.
Anal Chem ; 96(12): 4918-4924, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38471062

RESUMO

Pancreatic cancer is a highly aggressive and rapidly progressing disease, often diagnosed in advanced stages due to the absence of early noticeable symptoms. The KRAS mutation is a hallmark of pancreatic cancer, yet the underlying mechanisms driving pancreatic carcinogenesis remain elusive. Cancer cells display significant metabolic heterogeneity, which is relevant to the pathogenesis of cancer. Population measurements may obscure information about the metabolic heterogeneity among cancer cells. Therefore, it is crucial to analyze metabolites at the single-cell level to gain a more comprehensive understanding of metabolic heterogeneity. In this study, we employed a 3D-printed ionization source for metabolite analysis in both mice and human pancreatic cancer cells at the single-cell level. Using advanced machine learning algorithms and mass spectral feature selection, we successfully identified 23 distinct metabolites that are statistically significantly different in KRAS mutant human pancreatic cancer cells and mouse acinar cells bearing the oncogenic KRAS mutation. These metabolites encompass a variety of chemical classes, including organic nitrogen compounds, organic acids and derivatives, organoheterocyclic compounds, benzenoids, and lipids. These findings shed light on the metabolic remodeling associated with KRAS-driven pancreatic cancer initiation and indicate that the identified metabolites hold promise as potential diagnostic markers for early detection in pancreatic cancer patients.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Camundongos , Animais , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Células Acinares/metabolismo , Células Acinares/patologia , Detecção Precoce de Câncer , Neoplasias Pancreáticas/metabolismo , Mutação , Espectrometria de Massas , Biomarcadores/metabolismo , Carcinoma Ductal Pancreático/patologia
4.
Bioengineering (Basel) ; 10(5)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37237651

RESUMO

Animal joint motion is a combination of rotation and translational motion, which brings high stability, high energy utilization, and other advantages. At present, the hinge joint is widely used in the legged robot. The simple motion characteristic of the hinge joint rotating around the fixed axis limits the improvement of the robot's motion performance. In this paper, by imitating the knee joint of a kangaroo, we propose a new bionic geared five-bar knee joint mechanism to improve the energy utilization rate of the legged robot and reduce the required driving power. Firstly, based on image processing technology, the trajectory curve of the instantaneous center of rotation (ICR) of the kangaroo knee joint was quickly obtained. Then, the bionic knee joint was designed by the single-degree-of-freedom geared five-bar mechanism and the parameters for each part of the mechanism were optimized. Finally, based on the inverted pendulum model and the Newton-Euler recursive method, the dynamics model of the single leg of the robot in the landing stage was established, and the influence of the designed bionic knee joint and hinge joint on the robot's motion performance was compared and analyzed. The proposed bionic geared five-bar knee joint mechanism can more closely track the given trajectory of the total center of mass motion, has abundant motion characteristics, and can effectively reduce the power demand and energy consumption of the robot knee actuators under the high-speed running and jumping gait.

5.
Hortic Res ; 10(3): uhac292, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36938571

RESUMO

Chinese cabbage has a high annual demand in China. However, clubroot disease caused by the infection of Plasmodiophora brassicae seriously affects its yield. Transcriptome analysis identified a root meristem growth factor 6 (BrRGF6) as significantly up-regulated in Chinese cabbage roots infected with Plasmodiophora brassicae. Quantitative reverse-transcription polymerase chain reaction and in situ hybridization analysis showed higher BrRGF6 expression in susceptible materials than in resistant materials. After Plasmodiophora brassicae infection, BrRGF6 expression was significantly up-regulated, especially in susceptible materials. Gene function analysis showed that the roots of Arabidopsis mutant rgf6 grew faster than the wild-type, and delayed the infection progress of Plasmodiophora brassicae. A Protein, nuclear transcription factor Y subunit C (BrNF-YC), was screened from yeast two-hybrid library of Chinese cabbage induced by Plasmodiophora brassicae, and verified to interact with BrRGF6 by yeast two-hybrid co-transfer. Yeast one-hybrid and ß-Glucuronidase activity analysis showed that BrNF-YC could directly bind to and strongly activate the promoter of BrRGF6. Transgenic verification showed that BrRGF6 or BrNF-YC silenced Chinese cabbage significantly decreased the expression of BrRGF6, accelerated root development, and reduced incidence of clubroot disease. However, after overexpression of BrRGF6 or BrNF-YC, the phenotype showed a reverse trend. Therefore, BrRGF6 silencing accelerated root growth and enhanced resistance to clubroot disease, which was regulated by BrNF-YC.

6.
Front Plant Sci ; 14: 1128515, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968418

RESUMO

Introduction: Chinese cabbage is one of the most important vegetable crops in China. However, the clubroot disease caused by the infection of Plasmodiophora brassicae (P. brassicae) has seriously affected the yield and quality of Chinese cabbage. In our previous study, BrUFO gene was found to be significantly up-regulated in diseased roots of Chinese cabbage after inoculation with P. brassicae. UFO (UNUSUAL FLORAL ORGANS) have the properties of substrate recognition during ubiquitin-mediated proteolysis. A variety of plant can activate immunity response through the ubiquitination pathway. Therefore, it is very important to study the function of UFO in response to P. brassicae. Methods: In this study, The expression pattern of BrUFO Gene was measured by qRT-PCR and In situ Hybridization (ISH). The expression location of BrUFO in cells was determined by subcellular localization. The function of BrUFO was verified by Virus-induced Gene Silencing (VIGS). proteins interacting with BrUFO protein were screened by yeast two-hybrid. Results: Quantitative real-time polymerase chain reactions (qRT-PCR) and in situ hybridization analysis showed that expression of BrUFO gene in the resistant plants was lower than that in susceptible plants. Subcellular localization analysis showed that BrUFO gene was expressed in the nucleus. Virus-induced gene silencing (VIGS) analysis showed that silencing of BrUFO gene reduced the incidence of clubroot disease. Six proteins interacting with BrUFO protein were screened by Y2H assay. Two of them (Bra038955, a B-cell receptor-associated 31-like protein and Bra021273, a GDSL-motif esterase/acyltransferase/lipase Enzyme) were confirmed to strongly interact with BrUFO protein. Discussion: BrUFO gene should be a key gene of chinese cabbage against the infection of P. brassicae. BrUFO gene silencing improves the resistance of plants to clubroot disease. BrUFO protein may interact with CUS2 to induce ubiquitination in PRR-mediated PTI reaction through GDSL lipases, so as to achieve the effect of Chinese cabbage against the infection of P. brassicae.

7.
Aquat Toxicol ; 256: 106401, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36736151

RESUMO

Tris(2-butoxy) ethyl phosphate (TBOEP) is a typical organophosphorus flame retardant (OPFR), which has been detected in natural water bodies and drinking water and has reached a certain concentration. As a new type of organic pollutant, the environmental health risk of TBOEP needs to be assessed urgently. Here, Caenorhabditis elegans were exposed to 0, 50, 500, and 5000 ng/L TBOEP in water for 72 h. The results showed that TBOEP exposure caused concentration-dependent inhibition to the growth of nematodes, while exposure to 5000 ng/L TBOEP significantly inhibited the locomotor behavior of nematodes. Transcriptomic and metabolomic analysis showed that the disturbances in neurotransmitter transmission and amino acid, carbohydrate, and lipid metabolism were the reason for the neurotoxicity and growth toxicity of TBOEP to nematodes. These results provide basic data and a theoretical basis for evaluating the environmental health risks of organophosphorus flame retardants.


Assuntos
Retardadores de Chama , Nematoides , Poluentes Químicos da Água , Animais , Compostos Organofosforados/toxicidade , Transcriptoma , Retardadores de Chama/toxicidade , Retardadores de Chama/análise , Poluentes Químicos da Água/toxicidade
8.
Front Plant Sci ; 14: 1082395, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36760653

RESUMO

Introduction: The clubroot disease caused by Plasmodiophora brassicae (P. brassicae) poses a serious threat to the economic value of cruciferous crops, which is a serious problem to be solved worldwide. Some resistance genes to clubroot disease in Brassica rapa L. ssp pekinensis cause by P. brassicae have been located on different chromosomes. Among them, Rcr1 and Rcr2 were mapped to the common candidate gene Bra019410, but its resistance mechanism is not clear yet. Methods: In this experiment, the differences of BrRPP1 between the resistant and susceptible material of Chinese cabbage were analyzed by gene cloning and qRT-PCR. The gene function was verified by Arabidopsis homologous mutants. The expression site of BrRPP1 gene in cells was analyzed by subcellular localization. Finally, the candidate interaction protein of BrRPP1 was screened by yeast two-hybrid library. Results: The results showed that the cDNA sequence, upstream promoter sequence and expression level of BrRPP1 were quite different between the resistant and susceptible material. The resistance investigation found that the Arabidopsis mutant rpp1 was more susceptible to clubroot disease than the wild type, which suggested that the deletion of rpp1 reduces resistance of plant to clubroot disease. Subcellular location analysis confirmed that BrRPP1 was located in the nucleus. The interaction proteins of BrRPP1 screened from cDNA Yeast Library by yeast two-hybrid are mainly related to photosynthesis, cell wall modification, jasmonic acid signal transduction and programmed cell death. Discussion: BrRPP1 gene contains TIR-NBS-LRR domain and belongs to R gene. The cDNA and promoter sequence of BrRPP1 in resistant varieties was different from that in susceptible varieties led to the significant difference of the gene expression of BrRPP1 between the resistant varieties and the susceptible varieties. The high expression of BrRPP1 gene in resistant varieties enhanced the resistance of Chinese cabbage to P. brassicae, and the interaction proteins of BrRPP1 are mainly related to photosynthesis, cell wall modification, jasmonic acid signal transduction and programmed cell death. These results provide important clues for understanding the mechanism of BrRPP1 in the resistance of B. rapa to P. brassicae.

9.
Angew Chem Int Ed Engl ; 62(19): e202213703, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36617502

RESUMO

Reactive oxygen species (ROS) are critical for many cellular functions, and dysregulation of ROS involves the development of multiple types of tumors, including pancreatic cancer. However, ROS have been grouped into a single biochemical entity for a long time, and the specific roles of certain types of ROS in tumor cells (e.g., pancreatic ductal adenocarcinoma (PDAC)) have not been systematically investigated. In this work, a highly sensitive and accurate mass spectrometry-based method was applied to study PDAC cells of humans and of genetically modified animals. The results show that the oncogenic KRAS mutation promotes the accumulation of hydrogen peroxide (H2 O2 ) rather than superoxide or hydroxyl radicals in pancreatic cancer cells. We further identified that the enriched H2 O2 modifies cellular metabolites and promotes the survival of pancreatic cancer cells. These findings highlight the specific roles of H2 O2 in pancreatic cancer development, which may provide new directions for pancreatic cancer therapy.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Humanos , Peróxido de Hidrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Espectrometria de Massas , Neoplasias Pancreáticas
10.
Anal Chem ; 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36622658

RESUMO

Understanding the physiologies and pathologies of diseases requires a thorough understanding of metabolic heterogeneity in cells. This technical note presents a 3D printing technology for manufacturing an ionization source that is specially adapted for mass spectrometry-based single-cell analysis. This all-in-one 3D-printed electrospray ionization source integrates the sample introduction, metabolite extraction, and ionization into one device, simplifying the process of single-cell analysis and improving the reproducibility of the measurement. We successfully used it for high-throughput analysis of three types of cancer cells (around 17 cells/min) and used the t-distributed stochastic neighbor embedding algorithm to distinguish different cell types based on detected metabolites. By simply adjusting the printing parameters of the 3D-printed ionization source, it can be applied to cells with different sizes. The proposed 3D-printed ionization source promises to open new possibilities for single-cell analysis.

11.
Angew Chem Int Ed Engl ; 61(43): e202210288, 2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36057139

RESUMO

Lack of appropriate tools for visualizing cell membrane molecules at the nanoscale in a non-invasive and label-free fashion limits our understanding of many vital cellular processes. Here, we use tip-enhanced Raman spectroscopy (TERS) to visualize the molecular distribution in pancreatic cancer cell (BxPC-3) membranes in ambient conditions without labelling, with a spatial resolution down to ca. 2.5 nm. TERS imaging reveals segregation of phenylalanine-, histidine-, phosphatidylcholine-, protein-, and cholesterol-rich BxPC-3 cell membrane domains at the nm length-scale. TERS imaging also showed a cell membrane region where cholesterol is mixed with protein. Interestingly, the higher resolution TERS imaging revealed that the molecular domains observed on the BxPC-3 cell membrane are not chemically "pure" but also contain other biomolecules. These results demonstrate the potential of TERS for non-destructive and label-free imaging of cell membranes with nanoscale resolution.


Assuntos
Histidina , Análise Espectral Raman , Humanos , Análise Espectral Raman/métodos , Microscopia de Força Atômica/métodos , Proteínas , Fosfatidilcolinas , Membrana Celular , Fenilalanina
12.
Transplant Proc ; 54(7): 1795-1800, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35934537

RESUMO

BACKGROUND: The objective of this retrospective study was to establish the effect of the preoperative body mass index (BMI) on early outcomes of recipients after a kidney transplant, including liver and kidney function and fasting blood glucose recovery. METHODS: Our analytical cohort were patients who had undergone a kidney transplant at The First Affiliated Hospital of USTC [2016-2019]. The BMI classifications were underweight (<18.5 kg/m2), normal weight (18.5-23.9 kg/m2), and overweight or obese (≥24 kg/m2). A χ2 test was conducted to compare differences between the patients in the different BMI groups. RESULTS: We enrolled 831 recipients in the study. The percentage of patients with normal serum creatinine and normal urea nitrogen in the BMI ≥24 group was lower at different periods after surgery (P<0.05). The percentage of patients with normal uric acid in the normal weight group was higher on day 1 and the first week after surgery (P < 0.001). In the first and second weeks postsurgery, the percentage of patients with aspartate transaminase/alanine aminotransaminase in the BMI ≥24 group was lower (P < .005). In the first week postsurgery, the percentage of patients with normal albumin/globulin in the normal weight group was higher (P < .05). No statistically significant difference among the 3 groups was found in the incidence of hyperglycemia (P > .05). CONCLUSIONS: The patients who were overweight or obese preoperatively had poorer renal and liver functions postoperatively. Targeted interventions to control or mitigate rates of overweight or obesity preoperatively should be identified.


Assuntos
Transplante de Rim , Sobrepeso , Humanos , Índice de Massa Corporal , Sobrepeso/complicações , Sobrepeso/epidemiologia , Estudos Retrospectivos , Transplante de Rim/efeitos adversos , Obesidade/epidemiologia
13.
Anal Chem ; 94(6): 2873-2881, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35113514

RESUMO

Single-cell metabolomics is expected to deliver fast and dynamic information on cell function; therefore, it requires rapid analysis of a wide variety of very small quantities of metabolites in living cells. In this work, a hybrid ionization source that combines nanoelectrospray ionization (nanoESI) and dielectric barrier discharge ionization (DBDI) is proposed for single-cell analysis. A capillary with a 1 µm i.d. tip was inserted into cells for sampling and then directly used as the nanoESI source for ionization of polar metabolites. In addition, a DBDI source was employed as a post-ionization source to improve the ionization of apolar metabolites in cells that are not easily ionized by ESI. By increasing the voltage of the DBDI source from 0 to 3.2 kV, the classes of detected metabolites can be shifted from mostly polar to both polar and apolar to mainly apolar. Plant cells (onion) and human cells (PANC-1) were investigated in this study. After optimization, 50 compounds in onion cells and 40 compounds in PANC-1 cells were observed in ESI mode (3.5 kV) and an additional 49 compounds in onion cells and 73 compounds in PANC-1 cells were detected in ESI (3.5 kV)-DBDI (2.6 kV) hybrid mode. This hybrid ionization source improves the coverage, ionization efficiency, and limit of detection of metabolites with different polarities and could potentially contribute to the fast-growing field of single-cell metabolomics.


Assuntos
Metabolômica , Espectrometria de Massas por Ionização por Electrospray , Humanos
14.
Gastroenterology ; 162(1): 269-284, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34547282

RESUMO

BACKGROUND & AIMS: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive tumor that is almost uniformly lethal in humans. Activating mutations of KRAS are found in >90% of human PDACs and are sufficient to promote acinar-to-ductal metaplasia (ADM) during tumor initiation. The roles of miRNAs in oncogenic Kras-induced ADM are incompletely understood. METHODS: The Ptf1aCre/+LSL-KrasG12D/+ and Ptf1aCre/+LSL-KrasG12D/+LSL-p53R172H/+ and caerulein-induced acute pancreatitis mice models were used. mir-802 was conditionally ablated in acinar cells to study the function of miR-802 in ADM. RESULTS: We show that miR-802 is a highly abundant and acinar-enriched pancreatic miRNA that is silenced during early stages of injury or oncogenic KrasG12D-induced transformation. Genetic ablation of mir-802 cooperates with KrasG12D by promoting ADM formation. miR-802 deficiency results in de-repression of the miR-802 targets Arhgef12, RhoA, and Sdc4, activation of RhoA, and induction of the downstream RhoA effectors ROCK1, LIMK1, COFILIN1, and EZRIN, thereby increasing F-actin rearrangement. mir-802 ablation also activates SOX9, resulting in augmented levels of ductal and attenuated expression of acinar identity genes. Consistently with these findings, we show that this miR-802-RhoA-F-actin network is activated in biopsies of pancreatic cancer patients and correlates with poor survival. CONCLUSIONS: We show miR-802 suppresses pancreatic cancer initiation by repressing oncogenic Kras-induced ADM. The role of miR-802 in ADM fills the gap in our understanding of oncogenic Kras-induced F-actin reorganization, acinar reprogramming, and PDAC initiation. Modulation of the miR-802-RhoA-F-actin network may be a new strategy to interfere with pancreatic carcinogenesis.


Assuntos
Células Acinares/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Transformação Celular Neoplásica/metabolismo , Reprogramação Celular , MicroRNAs/metabolismo , Pâncreas/metabolismo , Neoplasias Pancreáticas/metabolismo , Pancreatite/metabolismo , Células Acinares/patologia , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Modelos Animais de Doenças , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos Transgênicos , MicroRNAs/genética , Mutação , Pâncreas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Pancreatite/genética , Pancreatite/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Transdução de Sinais
15.
Angew Chem Int Ed Engl ; 60(46): 24534-24542, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34505339

RESUMO

Even populations of clonal cells are heterogeneous, which requires high-throughput analysis methods with single-cell sensitivity. Here, we propose a rapid, label-free single-cell analytical method based on active capillary dielectric barrier discharge ionization mass spectrometry, which can analyze multiple metabolites in single cells at a rate of 38 cells/minute. Multiple cell types (HEK-293T, PANC-1, CFPAC-1, H6c7, HeLa and iBAs) were discriminated successfully. We found evidence for abnormal lipid metabolism in pancreatic cancer cells. We also analyzed gene expression in a cancer genome atlas dataset and found that the mRNA level of a critical enzyme of lipid synthesis (ATP citrate lyase, ACLY) was upregulated in human pancreatic ductal adenocarcinoma (PDAC). Moreover, both an ACLY chemical inhibitor and a siRNA approach targeting ACLY could suppress the viability of PDAC cells. A significant reduction in lipid content in treated cells indicates that ACLY could be a potential target for treating pancreatic cancer.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Lipídeos/análise , Espectrometria de Massas , Metaboloma , ATP Citrato (pro-S)-Liase/antagonistas & inibidores , ATP Citrato (pro-S)-Liase/genética , ATP Citrato (pro-S)-Liase/metabolismo , Carcinoma Ductal/metabolismo , Carcinoma Ductal/patologia , Linhagem Celular Tumoral , Sobrevivência Celular , Análise Discriminante , Células HEK293 , Humanos , Lipídeos/biossíntese , Espectrometria de Massas/métodos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Análise de Célula Única
16.
Nurse Educ Today ; 107: 105150, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34560392

RESUMO

BACKGROUND: Professional identity reduces the risk of job burnout in nurses, and attitudes towards death might be a factor affecting nurses' professional identity. Little research has been conducted to directly investigate the relationship between professional identity and death attitudes in nursing students. In addition, there are cultural differences in the formation of death attitudes. It is necessary to explore attitudes towards death in Chinese nursing students and investigate the relationship between death attitudes and professional identity. OBJECTIVES: To investigate the relationship between professional identity and death attitudes in nursing students in mainland China. DESIGN: A cross-sectional study. PARTICIPANTS: A total of 2119 nursing students from mainland China were included in this survey. METHODS: The survey was conducted online. The questionnaire included the Chinese version of the Professional Identification Scale and the Chinese version of the Death Attitude Profile - Revised to measure the nursing students' professional identity and attitudes towards death. The survey also collected the participants' age, gender, institution type, place of residence and self-assessed health state. RESULTS: The professional identity of the nursing students (average scores: 33.68 ± 5.12) from mainland China was above an intermediate level, and their attitudes towards death were positive overall (escape acceptance: 3.37 ± 0.96, approach acceptance: 3.36 ± 0.79, fear of death: 2.88 ± 0.77, death avoidance: 2.74 ± 0.84, neutral acceptance: 2.29 ± 0.77). Among the nursing students, professional identity was correlated with attitudes towards death. Specifically, professional identity was positively correlated with approach acceptance (p < 0.001), escape acceptance (p < 0.001) and neutral acceptance (p < 0.001) but negatively correlated with fear of death (p < 0.001) and death avoidance (p < 0.001). The nursing students with relatively low professional identity showed stronger death anxiety than those with relatively high professional identity (p < 0.001). CONCLUSION: The outcome of this study suggests that education on life and death and internship experience in palliative care contribute to the development of a high level of professional identity in nursing work.


Assuntos
Estudantes de Enfermagem , Atitude do Pessoal de Saúde , China , Estudos Transversais , Humanos , Inquéritos e Questionários
17.
Cell Death Discov ; 7(1): 195, 2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34312379

RESUMO

p53 and NF-κBp65 are essential transcription factors (TFs) in the cellular response to stress. Two signaling systems can often be entwined together and generally produce opposing biological outcomes in a cell context-dependent manner. Inhibitor of apoptosis-stimulating protein of p53 (iASPP) has the potential to inhibit both p53 and NF-κBp65, yet how such activities of iASPP are integrated with cancer remains unknown. Here, we utilized different cell models with diverse p53/NF-κBp65 activities. An iASPP(295-828) mutant, which is exclusively located in the nucleus and has been shown to be essential for its inhibitory effects on p53/NF-κBp65, was used to investigate the functional interaction between iASPP and the two TFs. The results showed that iASPP inhibits apoptosis under conditions when p53 is activated, while it can also elicit a proapoptotic effect when NF-κBp65 alone is activated. Furthermore, we demonstrated that iASPP inhibited the transcriptional activity of p53/NF-κBp65, but with a preference toward p53, thereby producing an antiapoptotic outcome when both TFs were simultaneously activated. This may be due to stronger binding between p53 and iASPP than NF-κBp65 and iASPP. Overall, these findings provide important insights into how the activities of p53 and NF-κBp65 are modulated by iASPP. Despite being a well-known oncogene, iASPP may have a proapoptotic role, which will guide the development of iASPP-targeted therapies to reach optimal outcomes in the future.

18.
Biomimetics (Basel) ; 6(2)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34067202

RESUMO

Whether the lower limb prosthesis can better meet the needs of amputees, the biomimetic performance of the knee joint is particularly important. In this paper, Nokov(metric) optical 3D motion capture system was used to collect motion data of normal human lower limbs, and the motion instantaneous center of multi-gait knee joint was obtained. Taking the error of knee joint motion instantaneous center line as the objective function, a set of six-bar mechanism prosthetic knee joint was designed based on a genetic algorithm. The experimental results show that the movement trajectory of the instantaneous center of the knee joint is basically similar to that of the human knee joint, so it can help amputees complete a variety of gaits and has good biomimetic performance. Gait acquisition technology can provide important data for prosthetic designers and it will be widely used in prosthetic design and other fields.

19.
Gene ; 791: 145711, 2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-33984445

RESUMO

Clubroot disease, caused by Plasmodiophora brassicae infection, occurs in cruciferous vegetable crops in many areas of the world, sometimes leading to yield loss. In this study, a differentially expressed protein (0305), was found between control and clubroot-diseased Chinese cabbage (Brassica rapa L.) roots through two-dimensional electrophoresis. Mass spectrometry analysis showed that Bra003466 was highly matched to protein 0305. Because the sequence of Bra003466 had 89% percent identity with ATG6 of Arabidopsis thaliana and other Brassica, the gene was named as BrATG6. However, 790 bp sequences were mismatched with the cDNA sequence of the Bra003466 gene from the Brassica database. In this study, we cloned the cDNA of Bra003466 and found the BrATG6 was highly expressed in roots among all organs. When plants were inoculated with P. brassicae Woronin, the expression of BrATG6 was significantly increased in infected roots of Chinese cabbage. This result was verified by reverse transcription-qPCR and in situ hybridization. Examination of disease resistance showed that, compared with wild type plants, A. thaliana ATG6 deletion mutants were more easily infected by P. brassicae than WT. This shows that BrATG6 may play a potential role in the resistance of B. rapa to P. brassicae infection.


Assuntos
Brassica rapa/genética , Resistência à Doença/genética , Infecções por Protozoários/genética , Sequência de Aminoácidos/genética , Arabidopsis/genética , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Brassica/genética , Brassica rapa/metabolismo , Genes de Plantas/genética , Doenças das Plantas/genética , Raízes de Plantas/genética , Plasmodioforídeos/genética , Plasmodioforídeos/patogenicidade
20.
Sensors (Basel) ; 20(23)2020 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-33260361

RESUMO

The change of an external environment leads to the defocusing phenomenon of the space optical remote sensor. The performance of the focusing mechanism is related to the image quality of the remote sensor. It was optimized for a novel focusing mechanism comprised of a flexural hinge lever-type amplifier and several piezoelectric ceramics to improve the performance on high loads and large stroke in this research. It has advantages of a lightweight, simple structure and high reliability compared with the traditional focusing mechanism. The input displacement from the piezoelectric actuators was amplified by a two-stage flexure hinge lever-type mechanism. Dimensional parameters of the flexural hinges were considered as design variables. Based on the optimization ideology, reasonable compliance and dimension parameters of the flexural hinges were analyzed for the focusing mechanism. Simulation and experiments of deformation were conducted to validate the correctness of design optimization. The results show that the focusing mechanism designed by the proposed method has the capabilities of an amplification ratio of 100 times and a loading carrying capacity of 2 kg. This work provides a novel strategy to design an excellent focusing mechanism with lightweight, high loads and large stroke. Moreover, it is believed that this approach can be extended to other complex sensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...